Q ple White Paper - 2025

Zero-Maintenance
QA Automation

An Engineering Leader's Guide to Escaping
Selector Hell

Why vision-based autonomous agents are the only way to scale QA in 2025

In this white paper, you'll learn:
+ Why selector-based automation fails at scale in modern CI/CD

+ How vision-based autonomous agents eliminate maintenance

The 3P Framework: Push, Probe, Pass workflow

Real case study: How Fi achieved 10x faster releases

Calculate your team's maintenance tax with interactive calculator

Abstract

For the last decade, engineering teams have been sold a lie: that if you write enough
Selenium scripts, you will eventually achieve stability. Here's the reality: it's all just a
maintenance trap. According to the World Quality Report 2025, despite massive
investment, the average organization has automated only 33% of their test cases.

This paper analyzes why selector-based automation is mathematically impossible to

scale in modern Cl/CD environments and introduces the Al-Native architecture that
replaces it. We move beyond "Al-assisted scripting" to true Autonomous Quality.

33% 56% 64%

Average Test Automation Coverage Report Skill Gaps as Blockers Struggle with Al Integration

Executive Summary

The Coverage lllusion

If you ask a VP of Engineering how their automation is going, they'll tell you they have
80% coverage. If you look at their commit history, you'll see their senior engineers
spending 30% of their week fixing tests that broke because a <div> changed to

a .

We call this the Maintenance Trap.

Traditional automation tools (Selenium, Appium, Playwright) were built for a static web
that no longer exists. They rely on the DOM—hunting for rigid identifiers like xpath //div/
button[2]. Modern frameworks like React and Vue, however, generate dynamic DOMs
where IDs change with every build.

The Industry Reality (Data from WQR 2025)
The World Quality Report 2025 paints a stark picture of the current state of QA:

Stagnation: The average test automation levels have stalled at 33%.

The Skill Gap: 56% of organizations report fragmented strategies and skill gaps as
major blockers.

The Al Struggle: 64% of teams cite "difficulty integrating Gen Al tools into existing
workflows" as their top challenge.

The Pivot: We are moving from Script-Based (telling the computer how to test)
to Intent-Based (telling the computer what to test).

"We didn't build Pie because we wanted better scripts. We built it because we
realized that asking humans to write code to test code is a recursive loop of
failure. The only way to win is to remove the script entirely."

— Dhaval Shreyas, Founder & CEO, Pie

http://localhost:4321/product/overview

The Root Cause
Why Selectors Fail at Scale

The fundamental flaw in traditional QA is Selector Dependency.

When a human tester looks at a login screen, they see a "Login Button." They don't care
if the button is named #btn-submit-01or .css-class-primary. They understand

the intent of the element based on its visual context.

Scripts are blind. They rely entirely on the underlying code structure.

Scripts are blind. They rely entirely on the underlying code structure.

The Brittleness Cycle

Code Change: A developer updates the Ul library. Button classes are regenerated.
Test Failure: The script looks for Zsubmit, finds nothing, and crashes.
False Positive: The app works fine for the user, but the build is blocked.

Maintenance Debt: An SDET spends 4 hours rewriting the script selectors.

The "Script Sprawl"

To combat this, teams write complex wrapper functions and helper logic. Your test
suite becomes a massive software project of its own.

WQR Validation: 50% of organizations explicitly cite "maintenance burden and
flaky scripts” as their primary automation challenge.

Internal Data: Pie's discovery data reveals that mid-sized enterprise teams
spend 20-40 hours per month merely maintaining existing suites—debugging
flaky tests and updating broken selectors.

The Innovation

Architecture: Vision-Based Autonomous
Agents
Pie rejects the DOM-first approach. We built an Al-Native platform that tests

at the Ul layer—exactly like a human user. Learn more about our vision-
based testing approach.

1. The Contextual Model

Instead of parsing code, Pie's Al agents perform an autonomous crawl of
your application. They navigate every screen, identify interactive elements,
and map user paths. This creates a Contextual Model—a structured
understanding of your app's features. The Al doesn't just see a button; it
understands that "this button leads to the Checkout flow."

2. Vision Over Selectors

Pie uses computer vision to identify elements.

Traditional: Click element at #login-btn

Pie Agent: Find the 'Login' button and click it.

If the underlying code changes but the button still looks like a login button to
the user, the test passes. Self-Healing by design, not as an afterthought.

3. Hybrid Al Engine

We don't rely on a single generic LLM. Pie uses a fleet of specialized Al
modules (built in Go) designed for distinct purposes: discovery, execution,
and bug analysis.

-

"Generative Al is great for creativity, but QA requires precision. That's why we
use a hybrid architecture. Classical machine learning handles the control
systems and accuracy, while GenAl handles the semantic understanding of the
Ul. It's the best of both worlds—creative exploration with deterministic
execution."

— Adithya Aggarwal, Founder & CTO, Pie

http://localhost:4321/product/overview
http://localhost:4321/product/overview
http://localhost:4321/product/overview#vision-first

The Workfiow

The 3P Framework: Push, Probe, Pass

We simplified the E2E process into three autonomous steps. No IDEs, no SDKs, no
instrumentation. See the full workflow on our product page.

Step 1: PUSH (Zero Integration)

You don't need to alter your source code or install an SDK.
Web: Provide a URL.

Mobile: Upload the .apk or.ipa build file.

Auth: Provide test credentials if behind a login wall.

Time: < 2 minutes.

Step 2: PROBE (Parallel Execution)

This is where the fleet of agents takes over.

Deep Discovery: Agents crawl the app to build the map.

Test Generation: Based on the map, the system generates hundreds of relevant E2E
tests covering functionality, performance, and edge cases.

Parallelization: Tests run simultaneously across isolated cloud devices.

Time: 15-30 minutes.

Step 3: PASS (The Readiness Score)

The output isn't a list of "failed scripts." It's a Readiness Score (0-100%) that tells you if
the build is safe to ship.

Findings vs. Issues: The Al intelligently clusters raw findings. If a navigation error
causes 50 tests to fail, you get one Issue report, not 50 alerts.

Visual Proof: Every issue comes with a video replay and step-by-step reproduction
instructions.

http://localhost:4321/product/overview#workflow

Case Study

How Fi Slashed Release Cycles from Days to
Hours

The Client: Fi (Series B, Consumer loT / Smart Dog Collar)

The Stakes: Reliability isn't optional for GPS tracking that millions depend on.
Release validation demands rigor to maintain the safety standards their
customers trust.

The Problem: Release validation consumed significant engineering
resources and extended release cycles across multiple devices and
configurations.

The Pie Solution

Fiintegrated Pie into their pipeline. Now, every code push triggers an
autonomous run.

Setup: Zero architecture changes. Pie simply plugged into the existing build
process.

Coverage: Expanded from basic smoke tests to complex edge cases
without writing scripts.

The Results
10X 75% 92%
(-) (-]
Faster Releases Less Manual Effort QA Headcount Reduction
.

"The delta between our system detecting something and informing the
customer should be almost instantaneous. Reliability amidst that is critical."

— Philip Hubert, Director of Mobile Engineering, Fi

\

Read the full Fi case study —

http://localhost:4321/customers/fi
http://localhost:4321/customers/fi

The Economics

Calculating the "Innovation Tax"'

The most expensive tool in your stack isn't the one you pay a subscription for;it's the
"free" open-source tool (Selenium/Appium) that consumes 30% of your engineering
capacity.

The "Incremental Gains" Trap

The World Quality Report 2025 notes that organizations using GenAl for testing report
an average productivity improvement of just 19%. Why so low? Because they are using
Al to write scripts faster. They are optimizing a broken process.

The Pie Differential: By removing the script entirely, Pie doesn't offer a 19%
gain. We offer a paradigm shift.

Manual/Scripted QA: Linear scaling. 100 new features =100 new scripts =100 new
Mmaintenance points.

Autonomous QA: Zero marginal maintenance. 100 new features = The agent learns
100 new paths automatically.

Calculate Your Team's Maintenance Tax

Most engineering leaders underestimate the hidden cost of test maintenance. Use the
calculator on our website. 4

Security & Compliance

The Enterprise Trust Layer

The World Quality Report 2025 identifies Data Privacy (67%) as the #1concern for Al
adoption in testing. Enterprises are terrified of leaking IP to a "Black Box" model.

Pie's architecture was built specifically to neutralize this threat.

1. The "Zero Source Code" Protocol

Most Al coding assistants (Copilot, Cursor) require read-access to your codebase. |
Pie does not.

We test at the Ul Layen.
We do not ingest, store, or train on your private repository.

Our agents see exactly what your user sees: pixels on a screen. This eliminates the
vector for source code leakage entirely.

2.Isolated Ephemeral Environments

We do not use shared runners. Every test run executes in a completely isolated,
sandboxed cloud environment.

Lifecycle: Spun up on-demand, destroyed immediately after execution.

Guarantee: Zero data cross-contamination between test runs or different customers.

3. Enterprise Standards

SOC 2 Type 2 Compliant: Verified security controls.
GDPR Ready: Compliant data handling for EU markets.
Encryption: TLS 1.2+ in transit, AES-256 at rest.

RBAC: Granular role-based access control to ensure only authorized personnel see
sensitive test results.

Implementation Roadmap

Breaking the "Integration Hell"

The WQR 2025 states that 64% of organizations struggle to integrate GenAl
tools into their existing workflows. This is because most tools require deep
hooks, SDK installations, and complex configuration files.

Pie is designed for a 30-Minute Ramp.

Phase 1: The Parallel Pilot (Week 1)

Don't rip and replace. Run Pie alongside your existing Selenium or manual
process.

Action: Upload your build binary or provide your staging URL.

Effort: 15 minutes.

Goal: Compare the False Positive Rate. See how many "bugs" your current
suite flags versus Pie's curated Issue Reports.

Phase 2: The Maintenance Offload (Weeks 2-3)

|dentify the "flakiest" 20% of your current tests—usually the dynamic Ul flows
like checkout or profile updates. Retire those brittle scripts and assign the
coverage to Pie.

Action: Use Pie Assistant to create specific custom tests using plain English
prompts (e.g. "Login as admin, change password, verify logout").

Result: Immediate reduction in weekly engineering hours spent on
debugging.

Phase 3: The CI/CD Gate (Month1)

Make Pie the gatekeeper.

Integration: Use the Pie GitHub Action or API.

Trigger: Run a full regression suite on every Pull Request or nightly build.
Outcome: Developers get a definitive Readiness Score in <80 minutes,
enabling true continuous deployment.

https://docs.pie.inc/

Conclusion

The Futureis Autonomous

The metrics are clear. The industry average for automation is stuck at 33% coverage.
Teams using autonomous agents are breaking that ceiling, achieving 80% coverage in
weeks, not years.

The winners of the next cycle won't be the teams that werite better scripts. It will be the
teams that stop writing scripts altogether.

Don't take our word for it.

We don't do "trust me" slides. We do "test your app" demos.

See Pie Break Your App Before Your Users Do

Not ready to bet a release on a new tool? Run Pie on your staging site first. Drop
in any web URL, walk away, and come back to a Readiness Score with real bugs,
videos, and repro steps. No credit card. No sales call. Just results.

Ready to see it in action? Book a demo with our team or visit pie.inc to learn

more.

https://calendly.com/jinoo-pie/demo?month=2025-11
http://localhost:4321/

